3.1171 \(\int \frac {\cos ^3(c+d x) \cot (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx\)

Optimal. Leaf size=288 \[ -\frac {2 a \left (8 a^2-23 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \left (8 a^2-21 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {8 a \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{15 b^2 d}-\frac {2 \sin (c+d x) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{5 b d}+\frac {2 \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}} \]

[Out]

8/15*a*cos(d*x+c)*(a+b*sin(d*x+c))^(1/2)/b^2/d-2/5*cos(d*x+c)*sin(d*x+c)*(a+b*sin(d*x+c))^(1/2)/b/d-2/15*(8*a^
2-21*b^2)*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticE(cos(1/2*c+1/4*Pi+1/2*d*x),2^
(1/2)*(b/(a+b))^(1/2))*(a+b*sin(d*x+c))^(1/2)/b^3/d/((a+b*sin(d*x+c))/(a+b))^(1/2)+2/15*a*(8*a^2-23*b^2)*(sin(
1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*x),2^(1/2)*(b/(a+b))
^(1/2))*((a+b*sin(d*x+c))/(a+b))^(1/2)/b^3/d/(a+b*sin(d*x+c))^(1/2)-2*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(
1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2,2^(1/2)*(b/(a+b))^(1/2))*((a+b*sin(d*x+c))/(a+b))
^(1/2)/d/(a+b*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.65, antiderivative size = 288, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.310, Rules used = {2895, 3059, 2655, 2653, 3002, 2663, 2661, 2807, 2805} \[ -\frac {2 a \left (8 a^2-23 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \left (8 a^2-21 b^2\right ) \sqrt {a+b \sin (c+d x)} E\left (\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{15 b^3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {8 a \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{15 b^2 d}-\frac {2 \sin (c+d x) \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{5 b d}+\frac {2 \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \Pi \left (2;\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )|\frac {2 b}{a+b}\right )}{d \sqrt {a+b \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^3*Cot[c + d*x])/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(8*a*Cos[c + d*x]*Sqrt[a + b*Sin[c + d*x]])/(15*b^2*d) - (2*Cos[c + d*x]*Sin[c + d*x]*Sqrt[a + b*Sin[c + d*x]]
)/(5*b*d) + (2*(8*a^2 - 21*b^2)*EllipticE[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sqrt[a + b*Sin[c + d*x]])/(15*b^3
*d*Sqrt[(a + b*Sin[c + d*x])/(a + b)]) - (2*a*(8*a^2 - 23*b^2)*EllipticF[(c - Pi/2 + d*x)/2, (2*b)/(a + b)]*Sq
rt[(a + b*Sin[c + d*x])/(a + b)])/(15*b^3*d*Sqrt[a + b*Sin[c + d*x]]) + (2*EllipticPi[2, (c - Pi/2 + d*x)/2, (
2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/(d*Sqrt[a + b*Sin[c + d*x]])

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2895

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(a*(n + 3)*Cos[e + f*x]*(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 1))/(b^2*d*f*(m
 + n + 3)*(m + n + 4)), x] + (-Dist[1/(b^2*(m + n + 3)*(m + n + 4)), Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x
])^m*Simp[a^2*(n + 1)*(n + 3) - b^2*(m + n + 3)*(m + n + 4) + a*b*m*Sin[e + f*x] - (a^2*(n + 2)*(n + 3) - b^2*
(m + n + 3)*(m + n + 5))*Sin[e + f*x]^2, x], x], x] - Simp[(Cos[e + f*x]*(d*Sin[e + f*x])^(n + 2)*(a + b*Sin[e
 + f*x])^(m + 1))/(b*d^2*f*(m + n + 4)), x]) /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[
m, 0] || IntegersQ[2*m, 2*n]) &&  !m < -1 &&  !LtQ[n, -1] && NeQ[m + n + 3, 0] && NeQ[m + n + 4, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^3(c+d x) \cot (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx &=\frac {8 a \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{15 b^2 d}-\frac {2 \cos (c+d x) \sin (c+d x) \sqrt {a+b \sin (c+d x)}}{5 b d}-\frac {4 \int \frac {\csc (c+d x) \left (-\frac {15 b^2}{4}-\frac {1}{2} a b \sin (c+d x)-\frac {1}{4} \left (8 a^2-21 b^2\right ) \sin ^2(c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{15 b^2}\\ &=\frac {8 a \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{15 b^2 d}-\frac {2 \cos (c+d x) \sin (c+d x) \sqrt {a+b \sin (c+d x)}}{5 b d}+\frac {4 \int \frac {\csc (c+d x) \left (\frac {15 b^3}{4}-\frac {1}{4} a \left (8 a^2-23 b^2\right ) \sin (c+d x)\right )}{\sqrt {a+b \sin (c+d x)}} \, dx}{15 b^3}+\frac {\left (8 a^2-21 b^2\right ) \int \sqrt {a+b \sin (c+d x)} \, dx}{15 b^3}\\ &=\frac {8 a \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{15 b^2 d}-\frac {2 \cos (c+d x) \sin (c+d x) \sqrt {a+b \sin (c+d x)}}{5 b d}-\frac {\left (a \left (8 a^2-23 b^2\right )\right ) \int \frac {1}{\sqrt {a+b \sin (c+d x)}} \, dx}{15 b^3}+\frac {\left (\left (8 a^2-21 b^2\right ) \sqrt {a+b \sin (c+d x)}\right ) \int \sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}} \, dx}{15 b^3 \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\int \frac {\csc (c+d x)}{\sqrt {a+b \sin (c+d x)}} \, dx\\ &=\frac {8 a \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{15 b^2 d}-\frac {2 \cos (c+d x) \sin (c+d x) \sqrt {a+b \sin (c+d x)}}{5 b d}+\frac {2 \left (8 a^2-21 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{15 b^3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}+\frac {\sqrt {\frac {a+b \sin (c+d x)}{a+b}} \int \frac {\csc (c+d x)}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{\sqrt {a+b \sin (c+d x)}}-\frac {\left (a \left (8 a^2-23 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {a}{a+b}+\frac {b \sin (c+d x)}{a+b}}} \, dx}{15 b^3 \sqrt {a+b \sin (c+d x)}}\\ &=\frac {8 a \cos (c+d x) \sqrt {a+b \sin (c+d x)}}{15 b^2 d}-\frac {2 \cos (c+d x) \sin (c+d x) \sqrt {a+b \sin (c+d x)}}{5 b d}+\frac {2 \left (8 a^2-21 b^2\right ) E\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {a+b \sin (c+d x)}}{15 b^3 d \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}-\frac {2 a \left (8 a^2-23 b^2\right ) F\left (\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{15 b^3 d \sqrt {a+b \sin (c+d x)}}+\frac {2 \Pi \left (2;\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )|\frac {2 b}{a+b}\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}}}{d \sqrt {a+b \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.75, size = 408, normalized size = 1.42 \[ \frac {-\frac {2 \left (8 a^2+9 b^2\right ) \sqrt {\frac {a+b \sin (c+d x)}{a+b}} \Pi \left (2;\frac {1}{4} (-2 c-2 d x+\pi )|\frac {2 b}{a+b}\right )}{\sqrt {a+b \sin (c+d x)}}+\frac {2 i \left (21 b^2-8 a^2\right ) \sec (c+d x) \sqrt {-\frac {b (\sin (c+d x)-1)}{a+b}} \sqrt {\frac {b (\sin (c+d x)+1)}{b-a}} \left (b \left (b \Pi \left (\frac {a+b}{a};i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )-2 a F\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )-2 a (a-b) E\left (i \sinh ^{-1}\left (\sqrt {-\frac {1}{a+b}} \sqrt {a+b \sin (c+d x)}\right )|\frac {a+b}{a-b}\right )\right )}{a b^2 \sqrt {-\frac {1}{a+b}}}+4 \cos (c+d x) (4 a-3 b \sin (c+d x)) \sqrt {a+b \sin (c+d x)}-\frac {8 a b \sqrt {\frac {a+b \sin (c+d x)}{a+b}} F\left (\frac {1}{4} (-2 c-2 d x+\pi )|\frac {2 b}{a+b}\right )}{\sqrt {a+b \sin (c+d x)}}}{30 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^3*Cot[c + d*x])/Sqrt[a + b*Sin[c + d*x]],x]

[Out]

(((2*I)*(-8*a^2 + 21*b^2)*(-2*a*(a - b)*EllipticE[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a
+ b)/(a - b)] + b*(-2*a*EllipticF[I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)] +
b*EllipticPi[(a + b)/a, I*ArcSinh[Sqrt[-(a + b)^(-1)]*Sqrt[a + b*Sin[c + d*x]]], (a + b)/(a - b)]))*Sec[c + d*
x]*Sqrt[-((b*(-1 + Sin[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Sin[c + d*x]))/(-a + b)])/(a*b^2*Sqrt[-(a + b)^(-1)])
 + 4*Cos[c + d*x]*(4*a - 3*b*Sin[c + d*x])*Sqrt[a + b*Sin[c + d*x]] - (8*a*b*EllipticF[(-2*c + Pi - 2*d*x)/4,
(2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]] - (2*(8*a^2 + 9*b^2)*EllipticPi[2,
 (-2*c + Pi - 2*d*x)/4, (2*b)/(a + b)]*Sqrt[(a + b*Sin[c + d*x])/(a + b)])/Sqrt[a + b*Sin[c + d*x]])/(30*b^2*d
)

________________________________________________________________________________________

fricas [F]  time = 3.33, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\cos \left (d x + c\right )^{3} \cot \left (d x + c\right )}{\sqrt {b \sin \left (d x + c\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^3*cot(d*x + c)/sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{3} \cot \left (d x + c\right )}{\sqrt {b \sin \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^3*cot(d*x + c)/sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

maple [B]  time = 1.86, size = 1018, normalized size = 3.53 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(1/2),x)

[Out]

2/15*(8*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Ellipti
cF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^4*b-6*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)
*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*
a^3*b^2-23*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*Elli
pticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^2*b^3+21*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x
+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticF(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(
1/2))*a*b^4-8*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*E
llipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a^5+29*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+
c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1
/2))*a^3*b^2-21*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)
*EllipticE(((a+b*sin(d*x+c))/(a-b))^(1/2),((a-b)/(a+b))^(1/2))*a*b^4-15*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(
d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(a-b))^(1/2)*b^4*EllipticPi(((a+b*sin(d*x+c))/(a-b))^(1/2),(a-b)/a
,((a-b)/(a+b))^(1/2))*a+15*((a+b*sin(d*x+c))/(a-b))^(1/2)*(-(sin(d*x+c)-1)*b/(a+b))^(1/2)*(-(1+sin(d*x+c))*b/(
a-b))^(1/2)*b^5*EllipticPi(((a+b*sin(d*x+c))/(a-b))^(1/2),(a-b)/a,((a-b)/(a+b))^(1/2))+3*a*b^4*sin(d*x+c)^4-a^
2*b^3*sin(d*x+c)^3-4*a^3*b^2*sin(d*x+c)^2-3*a*b^4*sin(d*x+c)^2+a^2*b^3*sin(d*x+c)+4*a^3*b^2)/a/b^4/cos(d*x+c)/
(a+b*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{3} \cot \left (d x + c\right )}{\sqrt {b \sin \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*cot(d*x+c)/(a+b*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^3*cot(d*x + c)/sqrt(b*sin(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^3\,\mathrm {cot}\left (c+d\,x\right )}{\sqrt {a+b\,\sin \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^3*cot(c + d*x))/(a + b*sin(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^3*cot(c + d*x))/(a + b*sin(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*cot(d*x+c)/(a+b*sin(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________